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Symmetry broken motion of a periodically driven Brownian particle: Nonadiabatic regime

M. V. Fistul
Max-Planck Institut fu¨r Physik Komplexer Systeme, D-01187, Dresden, Germany

~Received 4 October 2000; published 11 April 2002!

We report a theoretical study of an overdamped Brownian particle dynamics in the presence of both a
spatially modulated one-dimensional periodic potentialU(x) and a periodic alternating force~AF!. As the
periodic potentialU(x) has a low symmetry~a ratchet potential! the Brownian particle displays a broken
symmetry motion with a nonzero time average velocity. By making use of the Green function method and a
mapping to the theory of Brillouin bands the probability distributionP(x,t) of the particle coordinatex is
derived and the nonlinear dependence of the macroscopic velocity on the frequencyv and the amplitudeh of
the AF is found. In particular, our theory allows to go beyond the adiabatic limit (v50) and to explain the
peculiar reversal of the velocity sign found previously in the numerical analysis.

DOI: 10.1103/PhysRevE.65.046621 PACS number~s!: 05.40.Jc, 74.50.1r, 05.60.Cd
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The model of a particle moving in a periodic on
dimensional potentialU(x) has been used to explain diver
fascinating phenomena in various fields of physics, chem
try, and biology@1–3#. Well known examples of such phe
nomena are Brillouin bands and Bloch oscillations in t
solid state theory@4#, dynamics of Josephson junctions@5#,
energy transport in various biological systems@6#, etc.

The peculiar property of a particle motion in the period
potential is the presence of two different states, a static s
and a whirling ~dynamic! state. In the dynamic state, th
particle has a nonzero value of the time averaged velo

v5^ẋ(t)&. As the system is subject to an external noise,
‘‘ Brownian’’ particle motion becomes more complex~it dis-
plays both random damped oscillations and random jum
between the potential wells@7#!, the difference between li
bration and rotation states disappears.

The theory of Brownian particle motion in a specific p
riodic potential of cos-like shape and in the presence o
constant driving force~DF! has been developed in Ref
@2,8,9#. As a particular result it was found that in the absen
of a DF the mean particle velocity is zero. Moreover, it
well known @6,10# that equilibrium noise only cannot lead t
the fluctuation induced transport, and correspondinglyv
50 for the particle motion in an arbitrary periodic potent
U(x). In this case the diffusive motion of particle occur
The probabilities of fluctuation induced particle escape fr
the potential well to the left and to the right are identic
These probabilities are determined by the amplitude of
tentialU(x) and do not depend on the symmetry of potent

The situation changes drastically when a Brownian p
ticle is subject to both a periodic spatially modulated pot
tial ~PP! and a periodic alternating force~AF!. It was shown
in Ref. @11# by numerical analysis of the correspondin
Fokker-Planck equation that in this case the reflection s
metry of an overdamped particle motion (x to 2x) can be
broken, and directed transport occurs. The specific condi
of such transport is the low symmetry of the periodic pote
tial U(x) ~a ratchet potential!. Moreover, by making use o
the symmetry arguments and the numerical analysis it
shown that directed transport occurs even in the presenc
symmetric PP as the periodic AF has a low symmetry in ti
@12#.
1063-651X/2002/65~4!/046621~4!/$20.00 65 0466
s-

te

ty
e

s

a

e

.
-

l.
r-
-

-

n
-

s
of

e

An analytical description of a Brownian particle motion
an anisotropic periodic potential has been carried out in
adiabatic regime as the frequency of AFv is rather small
@11,13#. In this limit it was found for arbitrary values of the
noise strength and the amplitude of AFh, the particle moves
in the direction of the slower rate of potential change@13#.
However, in Ref.@11# the peculiarreversal of the signof v
has been found as the AF frequencyv becomes relatively
large. Moreover, in this nonadiabatic limit and as the amp
tude of AFh increases, the dependencev(h) displays oscil-
lations. These effects do not appear in the overdamped
terministic regime where the noise strength is zero@14#.
Notice here, that the directed transport of Brownian parti
is more complex than the one in the deterministic~over-
damped! case. In latter case, the nonzero value ofv appears
as a simple consequence of two different values of a de
ning force, and the directed transport is absent as the am
tude of AF is small. Thus, in order to explain various pec
liarities of the overdamped Brownian particle motion w
develop a theoretical analysis that goes beyond an adiab
approximation.

In this paper we present a consistent analytical appro
to the dynamics of an overdamped Brownian particle in
presence of both PPU(x) with the perioda and harmonic
AF, h cos(vt) @15,16#. By making use of a particular dia
grammatic technique that is valid in the limit of a large tim
the dependence of the mean velocity on the amplitudeh and
frequencyv of AF will be calculated. We find that in the
presence of AF the average velocity is determined by vari
relaxation processes inside the potential well, and the di-
rected transport of Brownian particle occurs as the poten
U(x) has a low symmetry. We also obtain the particu
range ofv where the interplay between noise and AF lea
to the reversal of the sign ofv. Although in the regime of a
small h the direct perturbation technique also allows us
obtain the current reversal@17#, the dependence of the mea
velocity on the relaxation processes and, therefore, on
various parameters of the problem~i.e., strength of the fluc-
tuations and the potential height! is not transparent in this
approach.

The dynamics of an overdamped particle is described
the Langeven equation@7#,
©2002 The American Physical Society21-1
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a ẋ~ t !1U8~x!5h cos~vt !1j~ t !, ~1!

where the white noise functionj(t) has a zero mean and th
correlation function^j(t)j(t8)&52aTd(t2t8). Here, a is
the damping coefficient andT is the effective temperatur
describing the strength of the fluctuations. Next, we int
duce the time-dependent probability densityP(x,t) that sat-
isfies the Fokker-Plank equation@2,3#,

a
]P~x,t !

]t
5T

]2P~x,t !

]x2
1

]

]x
$@U8~x!2h cos~vt !#P~x,t !%

~2!

with the initial condition

P~x,0!5d~x2x0!. ~3!

Using the Laplace transformationPl(x)5*0
`dtP(x,t)e2lt

and the standard substitutionPl(x,x0)5exp$2@U(x)
2U(x0)#/2T%Gl(x,x0) we obtain the integral equation for th
Green functionGl(x,x0)

Gl~x,x0!5Gl
0~x,x0!1E dl1

2p i
h

2l1

v21l1
2

1

aE dyGl
0~x,y!eU(y)/2T

d

dy
@e2U(y)/2TGl2l1

~y,x0!#, ~4!

whereGl
0(x,x0) is the Green function of the equation,

T
d2

dx2
Gl

0~x,x0!1Gl
0~x,x0!

3S 2TeU(x)/2T
d2

dx2
e2U(x)/2T2al D 52ad~x2x0!. ~5!

The mean value of particle velocityv is determined by the
probability P(x,t) in the limit of large time,

v5 lim
t→`

E dxP~x,t !
~x2x0!

t
. ~6!

In the absence of AF (h50) it immediately follows from
Eq. ~5! and the property@18# Gl

0(x,x0)5Gl
0(x0 ,x) that the

mean value of the velocity is zero for an arbitrary period
potentialU(x). However, in the presence of AF the probab
ity densityP(x,t) is determined by the product of the Gree
functions with different argumentsl. It leads to the breaking
of the symmetry and, therefore, to the directed transport

The perturbation series over the amplitude of AFh can be
presented in the diagrammatic form~see, Fig. 1!. Moreover,
we are interested in a nonoscillating part ofP(x,t) only.
Thus, the directed transport is determined byeven order
terms only. The zero, second, and fourth order terms
shown in Fig. 1. The argumentsl andp of the Green func-
tion Gl

0(p,x,x0) and Pl
0(p,x,x0) written in the mixed

momentum-coordinate representation are determined co
04662
-

re

re-

spondingly by the conservation of ‘‘energy’’ and ‘‘quasimo
mentum’’ in the knots. The integrals over all intermedia
coordinates have to be taken.

To obtain the fluctuation induced transport in the prese
of AF we need to know the long time behavior of the pro
ability distribution P(x,t) @see, the Eq.~6!#. This limit cor-
responds to small values ofl in the integral Eq.~4!. Physi-
cally it may be interpreted as the particle return to the sta
state after the multiple interactions with AF. It allows grea
to simplify the Eq.~4! just keeping most singular contribu
tions with small l arguments of the Green function
Gl

0(x,y). These terms can be presented in the diagramm
form ~see, Fig. 1!. By summing these terms and calculatin
the intermediate integrals overln we obtain the expression
for Gl(x,x0) in the form

Gl~x,x0!5E dpeip(x2x0)Gl
0~p;x,x0!

Zl~p!

12Zl~p!
. ~7!

Here, we introduce theperiodic Green functionGl
0(p;x,x0)

written in the mixed momentum-coordinate representati
andZl(p) is determined by expression,

Zl~p!5
h2

a2E dy1dy2Pl
0~p;y2 ,y1!

d

dy1

d

dy2
RePiv~y1 ,y2!. ~8!

To calculate the functionZl(p) and correspondingly, to
obtain the conditions when the directed transport occurs,
use the general properties of the Eq.~5!. This equation can
be mapped to a well known problem of an electron motion
a periodic potential@3,4#. Thus, the relaxation times spec
trum a/tn(p) of the Eq.~5! contains an infinite number o
bands and is determined by the wave vectorp. The lowest
band starts from the zero value, and in the region of sm
wave vectorsp has a form

1

tn~p!
5Dp2, p!

2p

a
, ~9!

FIG. 1. The most important diagrams and the diagrammatic p
sentation of Eq.~4!. Thin and thick solid lines correspond accor
ingly to Gl

0(p;x,y) andPl(x,y); dashed lines are due to the pre
ence of AF. The cross presents an operator (h/a)(d/dx). In the
limit of large time the parametersp andl are small.
1-2
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where thediffusion coefficient Ddepends on the strength o
the potential and temperature. In the limit of small fluctu
tions as the amplitude ofU(x) is large and the temperatureT
is small, we obtain that the value ofD}exp(2Umax
2Umin/T)5e2DU/T is also small. Note here, that the diffusio
coefficientD does not depend on the symmetry of the pot
tial U and is determined by the the narrow regions close
the top and bottom of potential. In the absence of AF
particle displays a diffusive motion and it is completely d
termined byD. The lowest band can also be mapped to
well known tight-binding model@4#. The corresponding
eigenfunctioncp(x) has the form of a Bloch wave@4#,
namely,cp(x) 5 eipxr p(x), where the periodic function

r p~x! . expF2
U~x!

2T G1pu0~x! ~10!

in the limit of smallp. Here, the first correctionu0(x) in the
region of smallp has been found in Refs.@3,19#. Upper
bands correspond to much smaller relaxation timestn but
exactly these bands determine the directed transport.

In the limit of large time the main contribution to th
probability distributionP(x,t) results from a small momen
tum p. The presence of anoddcomponent ofZl(p)}p leads
to a nonzero value ofv, and thus, by using Eqs.~9! and~10!
and substituting Eqs.~8! and ~7! in Eq. ~6! we arrive at the
expression forv

v5
h2

a2

2a

3AE0

a

dy1E
0

a

dy2 expS 23U~y1!

2T DexpS 3U~y2!

2T D
d

dy1
Re G̃iv~y1 ,y2!, ~11!

where A5*0
ady1*0

ady2e2U(y1)/TeU(y2)/T. Here, the Green

function G̃l(x,x0) is a solution of the Eq.~5! with periodic
boundary conditions.

The formula~11! is convenient for analysis of both gen
eral properties of Brownian particle motion and particu
limits. Thus, a general feature of an overdamped Brown
particle transport is that the average velocityv is determined
by the properties of potentialU(x) on thewhole rangeof its
variation. Moreover, the directed transport of Brownian p
ticle is an interplay of two effects: the fluctuation induc
particle escape from the potential well@the coefficient 1/A in
the Eq.~11!# and the AF induced relaxation processes ins
the potential well@the Green functionG̃iv(y1 ,y2) in the Eq.
~11!#. However, if the potentialU(x) displays a reflection
symmetry, namely,U(x) is an even function ofx, the aver-
age value ofv vanishes due to a fact that (d/dy1)Piv(y1 ,y2)
is an odd function ofy1 or y2, and one of the integrals in th
Eq. ~11! is zero.

If the potentialU(x) has no reflection symmetry, the av
erage velocity is not zero, and it increases ash2 in the limit
of a small amplitude of AFh. In this limit by making use of
the eigen functionscn(x) of the Eq.~5! we get
04662
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^v&5
h2

a2

2a

3A (
n

tn

11~vtn!2

E
0

a

dy1E
0

a

dy2expS 23U~y1!

2T DexpS 3U~y2!

2T Dcn~y2!cn8~y1!.

~12!

Thus, the average velocityv is small in both limits of small
and large effective temperatureT

v~T!}H e2
DU
T , T!Umax2Umin

T23f ~vt1!, T@Umax2Umin .
~13!

The particular functionf depends on the ratio between th
frequencyv and t1

21 wheret1 is the maximum relaxation
time of the particle in the potentialU(x). The Eq.~12! shows
that the adiabatic regime is valid only in the limit ofv
! 1/t1, The relaxation timet1 depends crucially on the
effective temperatureT. Thus, as the fluctuations are wea
(T ! DU), t15a/v0

2, wherev0 is the frequency of smal
oscillations at the bottom of potential well@20#. Moreover,
t1 can be even larger in the limit of small fluctuations as t
potentialU(x) has a form of a double potential well@20,21#.
In the opposite regime of large fluctuations (T @ DU) the
relaxation time depends onT and decreases as

t1 5
aa2

4p2T
. ~14!

In the limit of a small frequencyv the main contribution
to the directed transport results from the first ‘‘relaxati
time’’ band. It leads to a particular sign ofv that does not
change with the temperature. However, as the frequency
creases (v @ t1

21) the upper relaxation time bands dom
nate and the sign reversal can occur. As T increases the
laxation time t1 decreases and the adiabatic limit
recovered.

FIG. 2. The frequency dependence of the mean value of velo
v: the limit of large effective temperature.
1-3
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M. V. FISTUL PHYSICAL REVIEW E 65 046621
This general scenario can be verified in the limit of lar
temperatureT @ DU for a particular model of low symme
try potentialU(x) 5 U0„cos(2px/a)1g sin(4px/a)…, where
the parameterg is of order one. As the temperature is lar
the eigen functionscn(x) of the Eq.~5! are plain waves, the
main contribution to thev results from the first and secon
relaxation time bands, and we obtain

v~v! 5 g
h2

a2a

U0
3

T3
t1F 1

11~vt1!2
2

4

161~vt1!2G ,

~15!

wheret1 is determined by the Eq.~14!. The dependence o
v(v) that displays a sign reversal, is presented in Fig. 2

In the discussion presented to this point we assume
the amplitude of AFh is small. Ash increases the peculia
oscillations appear in the dependence ofv(h). The period of
these oscillationsDh can be estimated in the same limit
large temperatureT. The Green functionG̃iv(y1 ,y2) can be
found for arbitrary values of amplitude of AFh in the limit
of a small potentialU by making use of the Eq.~2!. Substi-
tuting obtained expression in the Eq.~11! we find
-
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m

its

v

m
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tts
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Dh~T! } H aav, v@t1
21

aat1
21 , v!t1

21 .
~16!

In conclusion, we have presented an analysis of an o
damped Brownian particle motion in the presence of perio
potential and AF. We have shown that the directed transp
in such a system is determined by two effects: the part
escape from a potential well and the relaxation proces
inside the potential well. It is at variance with both the sta
dard diffusive motion in the absence of AF and the nonlin
dynamic response of the system to a weak AF@7,20,21#. We
argue that thev dependent reversal of the sign ofv found
previously by numerical analysis is due to different stren
and symmetry of relaxation processes. This effect of reve
of Brownian motion should be directly observable in r
cently proposed Josephson junction systems@22,23#. More-
over, the observation of the dependence of directed trans
on the frequencyv and amplitudeh of AF, allows to inves-
tigate the various relaxation processes of an overdam
Brownian particle. The used method of taking into accou
the most singular diagrams where the momentump and pa-
rameterl are small, can be also useful in order to analy
the fluctuation induced transport in the presence of m
complex~periodic or random! AF @12,15,24#.

I thank S. Flach, O. Yevtushenko, Y. Zolotaryuk, and A.
Ustinov for useful discussions.
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