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Symmetry broken motion of a periodically driven Brownian particle: Nonadiabatic regime
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We report a theoretical study of an overdamped Brownian particle dynamics in the presence of both a
spatially modulated one-dimensional periodic potentidk) and a periodic alternating forod@\F). As the
periodic potentialU(x) has a low symmetrya ratchet potential the Brownian particle displays a broken
symmetry motion with a nonzero time average velocity. By making use of the Green function method and a
mapping to the theory of Brillouin bands the probability distributié(x,t) of the particle coordinate is
derived and the nonlinear dependence of the macroscopic velocity on the frequemclythe amplitude; of
the AF is found. In particular, our theory allows to go beyond the adiabatic liait @) and to explain the
peculiar reversal of the velocity sign found previously in the numerical analysis.
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The model of a particle moving in a periodic one- An analytical description of a Brownian particle motion in
dimensional potentidl (x) has been used to explain diverse an anisotropic periodic potential has been carried out in an
fascinating phenomena in various fields of physics, chemisadiabatic regime as the frequency of AFis rather small
try, and biology[1-3]. Well known examples of such phe- [11,13. In this limit it was found for arbitrary values of the
nomena are Brillouin bands and Bloch oscillations in thenoise strength and the amplitude of Af-the particle moves
solid state theory4], dynamics of Josephson junctiofsl,  in the direction of the slower rate of potential charid8].
energy transport in various biological syste[f$ etc. However, in Ref[11] the peculiareversal of the sigrof v

The peculiar property of a particle motion in the periodic has been found as the AF frequeneybecomes relatively
potential is the presence of two different states, a static statarge. Moreover, in this nonadiabatic limit and as the ampli-
and a whirling (dynamig state. In the dynamic state, the tude of AF 7 increases, the dependendey) displays oscil-
partig:le has a nonzero value of the time averaged velocityations. These effects do not appear in the overdamped de-
v=(x(t)). As the system is subject to an external noise, théerministic regime where the noise strength is zgtd].

“ Browniari particle motion becomes more complgit dis-  Notice here, that the directed transport of Brownian particle
plays both random damped oscillations and random jumpis more complex than the one in the determinigtwer-
between the potential well&]), the difference between li- damped case. In latter case, the nonzero value aGippears
bration and rotation states disappears. as a simple consequence of two different values of a depin-

The theory of Brownian particle motion in a specific pe- ning force, and the directed transport is absent as the ampli-
riodic potential of cos-like shape and in the presence of dude of AF is small. Thus, in order to explain various pecu-
constant driving force(DF) has been developed in Refs. liarities of the overdamped Brownian particle motion we
[2,8,9. As a particular result it was found that in the absencedevelop a theoretical analysis that goes beyond an adiabatic
of a DF the mean particle velocity is zero. Moreover, it is approximation.
well known[6,10] that equilibrium noise only cannot lead to  In this paper we present a consistent analytical approach
the fluctuation induced transport, and correspondingly, to the dynamics of an overdamped Brownian particle in the
=0 for the particle motion in an arbitrary periodic potential presence of both PB(x) with the perioda and harmonic
U(x). In this case the diffusive motion of particle occurs. AF, 7 cosft) [15,16. By making use of a particular dia-
The probabilities of fluctuation induced particle escape frongrammatic technique that is valid in the limit of a large time,
the potential well to the left and to the right are identical.the dependence of the mean velocity on the amplitpded
These probabilities are determined by the amplitude of pofrequencyw of AF will be calculated. We find that in the
tentialU(x) and do not depend on the symmetry of potential.presence of AF the average velocity is determined by various

The situation changes drastically when a Brownian par+elaxation processes inside the potential welhd the di-
ticle is subject to both a periodic spatially modulated poten+ected transport of Brownian particle occurs as the potential
tial (PP and a periodic alternating ford&F). It was shown U(x) has a low symmetry. We also obtain the particular
in Ref. [11] by numerical analysis of the corresponding range ofw where the interplay between noise and AF leads
Fokker-Planck equation that in this case the reflection symto the reversal of the sign af. Although in the regime of a
metry of an overdamped particle motior o —x) can be small » the direct perturbation technique also allows us to
broken, and directed transport occurs. The specific conditionbtain the current reversfl7], the dependence of the mean
of such transport is the low symmetry of the periodic poten-velocity on the relaxation processes and, therefore, on the
tial U(x) (aratchet potential. Moreover, by making use of various parameters of the problgire., strength of the fluc-
the symmetry arguments and the numerical analysis it wagiations and the potential height not transparent in this
shown that directed transport occurs even in the presence approach.
symmetric PP as the periodic AF has a low symmetry in time The dynamics of an overdamped particle is described by
[12]. the Langeven equatidiY],
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ax(t)+ U’ (x) = 7 cod wt) + &(1), (1) P

where the white noise functiof(t) has a zero mean and the
correlation function(£(t)&(t'))=2aTé8(t—t'). Here, a is ®
the damping coefficient andl is the effective temperature
describing the strength of the fluctuations. Next, we intro-
duce the time-dependent probability dend®fx,t) that sat-
isfies the Fokker-Plank equati$g,3], ®
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ot ax? 28 FIG. 1. The most important diagrams and the diagrammatic pre-
(2) sentation of Eq(4). Thin and thick solid lines correspond accord-
) o . ingly to Gﬁ(p;x,y) andP, (x,y); dashed lines are due to the pres-
with the initial condition ence of AF. The cross presents an operatata() (d/dx). In the
limit of large time the parameteysand\ are small.
P(x,0)= 8(x—Xg). 3

spondingly by the conservation of “energy” and “quasimo-
mentum” in the knots. The integrals over all intermediate
coordinates have to be taken.
To obtain the fluctuation induced transport in the presence
of AF we need to know the long time behavior of the prob-
ability distribution P(x,t) [see, the Eq(6)]. This limit cor-
_ 0 & 2N responds to small values afin the integral Eq(4). Physi-
G (X,Xg) = G (X,X0) + : . . ;
27i w2+)\§ cally it may be interpreted as the particle return to the stable
state after the multiple interactions with AF. It allows greatly
1 d to simplify the Eq.(4) just keeping most singular contribu-
;j dng(X,Y)eU(Y)/ZTd—y[efu(y)IZTkal(y,Xo)], (4 tions with small \ arguments of the Green functions
Gg(x,y). These terms can be presented in the diagrammatic

Using the Laplace transformatioR, (x)=[3dtP(x,t)e
and the standard substitutionP, (x,Xq)=exp[—[U(X)
—U(xg)/2T}G, (x,Xo) we obtain the integral equation for the
Green functionG, (X, Xg)

the intermediate integrals ovar, we obtain the expression
d2 for G, (X,Xp) in the form

T— GR(X,Xo) + GR(X,Xo)
dx Z\(p)

i—zp "

. G\ (x%0)= | dpePt DG pixxp)
—TeU(X)’ZT&e*U(X)’ZT— ax) =—ad(x—Xg). (5)

X

Here, we introduce thperiodic Green functiorGS(p;x,xo)

) o ) written in the mixed momentum-coordinate representation,
The mean value of particle velocity is determined by the 5.4 Z,(p) is determined by expression,

probability P(x,t) in the limit of large time,

2
- 7
v=Ilim f dxP(x,t) (X tXO) . (6) Z\(p)= ;j dy;dy,P3(p;y2.Y1)
t—oo
In the absence of AF#{=0) it immediately follows from da d ReP.
Eq. (5) and the property18] G (x,xo) =G} (Xo.X) that the dy; dy, "ePialyLY2)- ®

mean value of the velocity is zero for an arbitrary periodic

potentialU (x). However, in the presence of AF the probabil- ~ To calculate the functioiZ,(p) and correspondingly, to

ity density P(x,t) is determined by the product of the Green obtain the conditions when the directed transport occurs, we

functions with different arguments. It leads to the breaking Use the general properties of the Ef). This equation can

of the symmetry and, therefore, to the directed transport. be mapped to a well known problem of an electron motion in
The perturbation series over the amplitude of AEan be @ periodic potentia[3,4]. Thus, the relaxation times spec-

presented in the diagrammatic forisee, Fig. 1 Moreover, trum a/7,(p) of the Eq.(5) contains an infinite number of

we are interested in a nonoscillating part Bfx,t) only. ~ bands and is determined by the wave vegioiThe lowest

Thus, the directed transport is determined éyenorder band starts from the zero value, and in the region of small

terms only. The zero, second, and fourth order terms ar#ave vectorp has a form

shown in Fig. 1. The argumenisandp of the Green func-

tion GY(p,x,xo) and P%(p,x,xo) written in the mixed 1 2m ©)

. . i =D 2’ <—,
momentum-coordinate representation are determined corre- T(P) P P a
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where thediffusion coefficient Ddepends on the strength of 1
the potential and temperature. In the limit of small fluctua-

tions as the amplitude &f (x) is large and the temperatufe 0.8}
is small, we obtain that the value oD xexp(—Uqay
—Umin/T)=e2YTis also small. Note here, that the diffusion
coefficientD does not depend on the symmetry of the poten-

tial U and is determined by the the narrow regions close to v(®)
the top and bottom of potential. In the absence of AF theTo) 0.4r
particle displays a diffusive motion and it is completely de-
termined byD. The lowest band can also be mapped to a 0.2}
well known tight-binding model[4]. The corresponding
eigenfunction ¢,(x) has the form of a Bloch wavé4],

namely, i (x) = eipxrp(x), where the periodic function or

-0.2
0
+ pug(x) (10 T

U
rp(x) = ex;{ — %

. o _ ) . FIG. 2. The frequency dependence of the mean value of velocity
in the limit of smallp. Here, the first correctiong(x) in the  4: the limit of large effective temperature.

region of smallp has been found in Ref$3,19. Upper

bands correspond to much smaller relaxation timgdut 2
exactly these bands determine the directed transport. (v)= 77_2

In the limit of large time the main contribution to the a

probability distributionP(x,t) results from a small momen- ) )
tum p. The presence of andd component o, (p)«p leads a a —3U(y 3U(y; ,
to a nonzero value af, and thus, by using Eq$9) and(10) fo dylfo dyzexp( 2T )exp{ 2T )"0“(3’2) Un(Y)-
and substituting Eq98) and (7) in Eqg. (6) we arrive at the (12)
expression fow

2a .
3A 4§ 1+(co7'n)2

Thus, the average velocity is small in both limits of small

- "_Zz_afad fad . ~3U(y,) . 3U(y,) and large effective temperatuiie
VT 2 3A ), 9 2T 2T v T<U —U.
e T, max min
v(T)ex (13
d Tisf(le)a T>Umax= Umin-
— Re Gi,(Y1.Y2), 11 . , .
dy; ® Gio(y1y2) (1D The particular functiorf depends on the ratio between the

frequencyw and Tl_l where 7, is the maximum relaxation
where A:fgdylfgdy267U(Yl)/TeU(YZ)/T' Here, the Green time of the particle in the potenti&l(x). The Eq.(12) shows
function G, (x,x) is a solution of the Eq(5) with periodic  that the adiabatic regime is valid only in the limit of
boundary conditions. < 1/_71, The relaxation timer; depends cru_mally on the
The formula(11) is convenient for analysis of both gen- effective temperaturd. Thus, as the fluctuations are weak

eral properties of Brownian particle motion and particular(T < AU), 1= al wj, Wherew, is the frequency of small
limits. Thus, a general feature of an overdamped Browniafscillations at the bottom of potential w¢0]. Moreover,
particle transport is that the average velogitis determined 71 ¢an be even larger in the limit of small flu_ctuat|ons as the
by the properties of potenti&l (x) on thewhole rangeof its ~ Potentialu(x) has a form of a double potential wé20,21].
variation. Moreover, the directed transport of Brownian par-In the opposite regime of large fluctuationk ¢= AU) the
ticle is an interplay of two effects: the fluctuation induced rélaxation time depends ohand decreases as

particle escape from the potential wghe coefficient 1A in )

the Eq.(11)] and the AF induced relaxation processes inside aa

the potential wel[the Green functioiG;,,(y;,Y,) in the Eq. i 47T’ 14

(12)]. However, if the potentialJ(x) displays a reflection

symmetry, namelylJ(x) is an even function ok, the aver- In the limit of a small frequency the main contribution

age value of vanishes due to a fact thal/dy;)P;,(y1,y,)  to the directed transport results from the first “relaxation

is an odd function of/; ory,, and one of the integrals in the time” band. It leads to a particular sign of that does not

Eq. (11) is zero. change with the temperature. However, as the frequency in-
If the potentialU(x) has no reflection symmetry, the av- creases¢ > 7-1’1) the upper relaxation time bands domi-

erage velocity is not zero, and it increasesz&dn the limit  nate and the sign reversal can occur. As T increases the re-

of a small amplitude of ARy. In this limit by making use of laxation time 7, decreases and the adiabatic limit is

the eigen functiong,(x) of the Eq.(5) we get recovered.
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This general scenario can be verified in the limit of large aaw, w>71—1
temperaturd > AU for a particular model of low symme- Ay(T) « 1 -1 (16
try potentialU(x) = Ugy(cos(2mx/a)+ ysin(4mx/a)), where aar s, O<T.

the parametey is of order one. As the temperature is large |y conclusion, we have presented an analysis of an over-
the eigen functiong/,(x) of the Eq.(5) are plain waves, the gamped Brownian particle motion in the presence of periodic
main contribution to the results from the first and second potential and AF. We have shown that the directed transport
relaxation time bands, and we obtain in such a system is determined by two effects: the particle
escape from a potential well and the relaxation processes
inside the potential well. It is at variance with both the stan-
5 113 dard diffusive motion in the absence of AF and the nonlinear
(@) = 777_ &T - _ 4 dynamic response of the system to a weak[&[20,21. We
a?a T 1+ (wm)? 16+(wm)?] argue that thao dependent reversal of the sign offound
(15) previously by numerical analysis is due to different strength
and symmetry of relaxation processes. This effect of reversal
of Brownian motion should be directly observable in re-
cently proposed Josephson junction syst¢&%23. More-
where 7, is determined by the Eq14). The dependence of qver, the observation of the dependence of directed transport
v(w) that displays a sign reversal, is presented in Fig. 2. on the frequency and amplitude of AF, allows to inves-

In the discussion presented to this point we assume thaigate the various relaxation processes of an overdamped
the amplitude of AFz is small. Asy increases the peculiar Brownian particle. The used method of taking into account
oscillations appear in the dependence 6#). The period of the most singular diagrams where the momenfuend pa-
these oscillationd\ » can be estimated in the same limit of rﬁm%terx are sr_nacljll, czén be also U_seftrl]l in order to a?alyze
large temperatur@. The Green functior;,(y;,y,) can be € fluctuation induced transport in the presence of more
found for arbitrary values of amplitude of AR in the limit ~ cOmPlex(periodic or randomAF [12,15,24.
of a small potentiall by making use of the Eq2). Substi- I thank S. Flach, O. Yevtushenko, Y. Zolotaryuk, and A. V.
tuting obtained expression in the E41) we find Ustinov for useful discussions.
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